GUIDELINES

EANM practice guideline for PET/CT imaging in medullary thyroid carcinoma

Luca Giovanella¹ · Giorgio Treglia¹ · Ioannis lakovou² · Jasna Mihailovic³ · Frederik A. Verburg⁴ · Markus Luster⁴

Received: 6 July 2019 / Accepted: 22 July 2019 / Published online: 4 September 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Background Medullary thyroid carcinoma (MTC) is a malignant tumour derived from the para-follicular thyroid C cells. It may occur in sporadic or hereditary forms and surgery represent the primary cure.

Methods Ultrasound examination and, in selected cases, cross-sectional anatomic imaging procedures, are adopted to stage the disease before primary surgery while different anatomic/morphologic and functional/molecular imaging procedures can be adopted in detecting persistent/recurrent disease. Positron emitting radiopharmaceuticals including fluorine-18 fluorodeoxyglucose (¹⁸F-FDG), fluorine-18 dihydroxyphenylalanine (¹⁸F-FDOPA) and somatostatin analogues labelled with gallium-68 (⁶⁸Ga-SSA) tracks different metabolic pathways or receptor expression/functioning, and proved to be useful in detecting MTC recurrences/metastasis.

Conclusions This practice guideline from the Thyroid Committee of the European Association of Nuclear Medicine (EANM), with involvement of external experts, provides recommendations based on updated literature's evidences. The purpose of this practice guideline is to assist imaging specialists and clinicians in recommending, performing and interpreting the results of PET/ CT with various radiopharmaceuticals in patients with MTC.

 $\textbf{Keywords} \ \ Medullary thyroid carcinoma \ \cdot PET/CT \ \cdot Fluorodeoxyglucose \ \cdot Dihydroxyphenylalanine \ \cdot Somatostatin$

Preamble

The European Association of Nuclear Medicine (EANM) is a nonprofit association pursuing clinical and research excellence in nuclear medicine. The EANM defines guidelines to improve the quality of nuclear medicine practice and research in order to provide the most appropriate care for patients. Such

This article is part of the Topical Collection on $\ensuremath{\mathsf{Oncology}}\xspace - \ensuremath{\mathsf{Head}}\xspace$ and Neck

Luca Giovanella Luca.Giovanella@eoc.ch

- ¹ Clinic for Nuclear Medicine and Thyroid Competence Centre, Imaging Institute of Southern Switzerland, Via Ospedale 6, CH-6500 Bellinzona, Switzerland
- ² Academic Department of Nuclear Medicine, Papageorgiu Hospital, Thessaloniki, Greece
- ³ Department of Nuclear Medicine, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
- ⁴ Department of Nuclear Medicine, University Hospital Marburg, Marburg, Germany

guidelines, however, are neither inflexible rules nor requirements of practice nor established legal standard of care. Practitioners may diverge from guidelines when different actions are required by the condition of the patient, resources availability or new insights. This practice guideline has been developed to assist imaging specialists and clinicians in recommending, performing and interpreting the results of PET/CT with different radiopharmaceuticals in patients with MTC. An additional aim is to facilitate future prospective multicentre studies. To obtain an evidence-based practice guideline, a preliminary systematic search of the literature was performed through PubMed and Cochrane library database (search date: 31.12.2017). The key words combination used for the literature search was: A) "PET" OR "positron emission tomography" AND B) "medullary" AND C) "thyroid". Articles in English language were selected and reported in the reference list. Case reports and articles reporting data on non-hybrid modalities (PET only) were excluded. The recommendations on the use of PET/CT with different radiopharmaceuticals in MTC were developed by a panel of experts and underwent multiple rounds of revision until consensus was achieved.

Medullary thyroid carcinoma: background informations

Epidemiology, tumour origin and genetics

Medullary thyroid carcinoma (MTC) is a neuroendocrine tumour originating from the neural crest-derived parafollicular C cells of the thyroid gland and accounts for about 1 to 2% of thyroid malignancies [1, 2]. MTC occurs in sporadic or hereditary form, the latter being part of type 2 multiple endocrine neoplasia (MEN2) syndromes. MEN2 syndromes are caused by different germline mutations in RET protooncogene (located on chromosome 10q11.2), encoding a transmembrane receptor of the tyrosine kinase family, associated with different biological and clinical behaviour [1, 3–5]. About 50% of sporadic MTCs carried somatic RET mutations while RAS mutations are detected in a significant proportion of remaining tumours [3–7].

Clinical presentation

Classical MEN2A syndromes (95% of cases, incidence 1/1,973,500) include MTC, pheochromocytoma (PHEO) and hyperparathyroidism (HPTH). Cutaneous lichen amyloidosis or Hirschsprung's disease may also coexist in some cases (MEN2A variants). Patients with MEN2B (5% of cases, incidence 1/38,750,000), develop aggressive MTC in infancy, associated with PHEO [4]. Inherited MTC may also present in families or individuals with RET germline mutations but neither PHEOs nor HPTH (i.e. familial MTC, FMTC) [3]. MEN2-related MTCs are generally multicentric and involve both thyroid lobes whereas sporadic MTCs occur in adults (~ 40-60 years) and are usually unifocal and monolateral [4, 6-8]. About 7% of patients with presumed sporadic MTC carry germline mutations [1]. Accordingly, genetic testing, that is mandatory in patients with MEN2 syndromes and their first-degree relatives should be also offered to patients with presumed sporadic MTC. Lymph node metastases are present in 14% (central neck compartment) and 11% (lateral neck compartments) of patients with T1 tumours and in up to 86% and 93% of patients with T4 tumours, respectively [9, 10]. Ten years after MTC diagnosis survival rates of 100%, 93%, 71% and 21% were observed in patients with AJCC stage I, II, III and IV MTC [11].

Serum tumour markers

Calcitonin (CT) and procalcitonin (PCT) are specifically secreted by parafollicular C cells and serve as valuable tumour markers in patients with MTC [1, 12–14]. CEA is an aspecific tumour marker but it is a useful complementary tool to detect disease relapse and progression after primary treatment [1]. Notably, both calcitonin and CEA doubling times are useful prognostic predictors in patients with persistent disease after surgery [1].

Cytology and histology

Fine needle aspiration cytology (FNAC) is able to detect \sim 50% of MTCs [15]. Immunocytochemical (ICC) staining against CT and/or its measurement in the needle washouts significantly increase diagnostic accuracy when inconclusive cytological findings are rendered [1, 16, 17]. Sporadic MTCs are generally unifocal, whereas inherited tumours are multicentric and involve both lobes [17, 18]. In case of microscopic features suggesting MTC additional immunostaining against specific biomarkers (i.e. CT, CEA, chromogranin A) is warranted [19].

Role of imaging methods in MTC

The only potentially curative treatment for MTC is surgery, consisting in total thyroidectomy and with risk-adapted neck dissections. Surgery and imaging-guided local treatments (i.e. external beam radiotherapy, thermal ablations, cementoplasty) and thyrosine kinase inhibitors can be used and combined to treat progressive advanced MTC [12]. Different anatomical and functional imaging procedures may be used in patients with MTC to stage the disease before surgery as well as to detect persistent/recurrent disease [1, 12, 20, 21]. Whereas the role of functional radionuclide imaging is limited in preoperative staging [22], its role may be valuable to detect and localize recurrent disease in front of postoperative increase of serum levels of MTC markers with corresponding negative or inconclusive morphologic imaging.

Radionuclide imaging in MTC: gamma emitting radiopharmaceuticals

Technetium-99m-labelled pentavalent dimercaptosuccinic acid (^{99m}Tc-(V)DMSA), somatostatin Indium-111/technetium-99m labelled somatostatin analogues (¹¹¹In-pentetreotide, ^{9 9 m}Tc-depreotide) and iodine-123-labelled metaiodobenzylguanidine (¹²³I-MIBG) were proposed to detect MTC relapse but overall sensitivity is unsatisfactory compared with conventional anatomic imaging (i.e. US, CT, MRI) and positron emission tomography/computed tomography [12, 21–31]. However, current clinical guidelines recommend whole-body bone scan with ^{99m}Tc-diphosphonates to detect/ exclude bone metastases in MTC patients [32]. Finally, a positive ¹²³I-MIBG scan in patients with relapsing/advanced MTC (about 30% of cases) predicts partial remission or stabilization of the disease after radiometabolic treatment with ¹³¹I-MIBG [21, 22, 31].

Radionuclide imaging in MTC: positron emitting radiopharmaceuticals

Although several radionuclide imaging modalities are available, PET/CT using ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG), ¹⁸F-fluoroDOPA (¹⁸F-FDOPA) and ⁶⁸Ga-somato-statin analogues (⁶⁸Ga-SSA) offers higher sensitivity imaging compared with conventional nuclear medicine techniques, therefore these practice guidelines will be focused on PET/CT imaging in MTC.

PET/CT imaging in MTC patients: procedure guidelines

PET/CT examinations should be performed according to existing procedure guidelines for ¹⁸F-FDG PET/CT tumour imaging [33] and for PET/CT imaging of neuroendocrine neoplasms with ¹⁸F-FDOPA and ⁶⁸Ga-SSA [34], respectively.

Mechanism of uptake and rationale for PET tracers use in MTC

¹⁸F-FDG It is the most used PET radiopharmaceutical worldwide; as glucose analogue, the use of ¹⁸F-FDG for PET imaging allows to detect tumours with increased glucose metabolism. ¹⁸F-FDG uptake in MTC cells is linked to glucose transporters (GLUT) overexpression and increased hexokinase activity. Furthermore, ¹⁸F-FDG uptake correlates with high proliferative activity and poor differentiation of MTC cells [35–39].

¹⁸F-FDOPA DOPA is the precursor of endogenous catecholamines. ¹⁸F-FDOPA is picked up by specific transporters (Ltype amino acid transporter, LAT) and converted to ¹⁸F-dopamine by cytosolic aromatic amino acid decarboxylase (AADC). Both LAT expression and AADC activity are upregulated in MTC cells leading to increased ¹⁸F-FDOPA uptake in MTC lesions [38, 39].

⁶⁸Ga-SSA NET cells may overexpress somatostatin receptors (SSTRs) and this is the rationale for using radiolabelled SSA as targets for both radionuclide imaging (i.e. by using SSA labelled with positron-emitters such as ⁶⁸Ga) and therapy (i.e. by using SSA labelled with beta-emitters such as ¹⁷⁷Lu and ⁹⁰Y) of NETs. ⁶⁸Ga-SSA (i.e. DOTATOC, DOTATATE, DOTANOC, DOTALAN) have different affinities for the five SSTR subtypes. Overall, all ⁶⁸Ga-SSA can target SSTR subtype 2 efficiently, which is the SSTR subtype most overexpressed in NETs [34]. Radiolabelled SSA binding and retention in MTC cells is related to some specific aspects including density of SSTRs on the cell surface and degree of internalization of the SSA-SSTR complex [34].

Synthesis and quality control

¹⁸**F-FDG** The synthesis and quality control of ¹⁸F-FDG have to conform to the criteria laid down in the European Pharmacopeia or the US Pharmacopeia. ¹⁸F-FDG can be prepared in-house or provided "ready to use".

¹⁸F-FDOPA The synthesis of ¹⁸F-FDOPA requires up to 4 h and unfortunately it is characterized by a low labelling efficiency. ¹⁸F-FDOPA can be prepared in-house or it can be supplied in two different formulations that conforms the criteria laid down in the European Pharmacopoeia: "ready to use" or neutralized using a bicarbonate buffer kit supplied by the manufacturer.

⁶⁸Ga-SSA ⁶⁸Ga-SSA synthesis can be performed in-house and must fulfil the criteria laid down in the European Pharmacopoeia monographs and/or good radiopharmaceutical practice. Radiolabelling of SSA with ⁶⁸Ga is automated and requires between 20 and 30 min providing high radiochemical purity. The labelling procedure includes the following steps: ⁶⁸Ga elution by ⁶⁸Ge/⁶⁸Ga generators, SSA radiolabelling, purification, sterilization and quality controls.

Dosage/activity and administration

All the PET radiopharmaceuticals for MTC are intravenously administered with activities dependent on several factors as the patient's weight, the PET/CT scanner, the acquisition time and in adult patients usually range from 2 to 5 MBq/kg, 2 to 4 MBq/kg and 100 to 200 MBq for ¹⁸F-FDG, ¹⁸F-FDOPA and ⁶⁸Ga-SSA, respectively. The amount of SSA injected should be less than 50 μ g without any significant pharmacological effect expected.

Radiation dosimetry

The effective doses are 0.020–0.025 mSv/MBq for ¹⁸F-FDG, \sim 0.020 mSv/MBq for ¹⁸F-FDOPA and \sim 0.025 mSv/MBq for ⁶⁸Ga-SSA, respectively (ICRP publication 128, 2015). Additional radiation exposure originates from the CT scan carried out in the ¹⁸F-FDG PET/CT study and the effective dose by this exposure depends on the characteristics of the CT system (diagnostic/low dose attenuation) and may differ strongly from patient to patient.

Precautions

In female patients with known or suspected pregnancy, the decision to perform or not PET/CT examinations should take into account the benefits against the possible harm. It is suggested to discontinue breastfeeding for 12 h after PET/CT imaging.

Patient preparation

¹⁸F-FDG Fasting for at least 4 h prior to ¹⁸F-FDG injection is required to lower blood glucose and insulin levels and, in turn, reduce uptake by non-tumour cells. ¹⁸F-FDG can be administered if the glucose level is < 11 mmol/L. Diabetic patients require specific instructions for glucose control. In order to minimize ¹⁸F-FDG uptake in muscles strenuous exercise should be avoided for at least 6 h before ¹⁸F-FDG administration. Additionally, patients are required to remain seated or recumbent and silent during the injection of ¹⁸F-FDG and the following uptake phase. An adequate room temperature should be assured before the injection of ¹⁸F-FDG and throughout the subsequent phases to minimize ¹⁸F-FDG uptake in brown adipose tissue (BAT).

¹⁸**F-FDOPA** On precautional basis, ¹⁸F-FDOPA should be administered to patients fasting for at least 4 h without limiting water intake to avoid interactions with amino acids from food. No consensus exists about the oral administration of carbidopa (i.e. a decarboxylase inhibitor) 1 h before ¹⁸F-FDOPA injection, to increase ¹⁸F-FDOPA uptake in MTC cells.

⁶⁸Ga-SSA There is no need of fasting before ⁶⁸Ga-SSA injection. The need of cold SSA discontinuation prior to ⁶⁸Ga-SSA PET/CT is still debated.

In all cases, for radiation safety reasons, low urinary concentration of PET radiopharmaceuticals should be assured providing adequate patients' hydration. In addition, the bladder activity must be reduced asking the patients to void immediately prior to the PET/CT examination. Patients should be also able to lie still for during the entire examination.

Image acquisition

PET/CT scans are usually obtained 60 min (from 45 to 90 min) after ¹⁸F-FDG injection; 30 to 60 min after ¹⁸F-FDOPA injection and 45 to 90 min after ⁶⁸Ga-SSA injection, respectively. The imaging field ranges from the base of the skull to the mid-thighs (or whole-body imaging, depending on the clinical setting). First topogram, then low-dose CT images and finally PET images are acquired. Early ¹⁸F-FDOPA images (at 15 min after radiopharmaceutical injection) centred over

the neck may also be acquired in patients with MTC. In fact, MTC lesions often show rapid washout and are better visualized on these early PET images [40, 41]. Usually, a low-dose CT scan protocol is adopted for attenuation correction and anatomical correlation. Additional standard contrast-enhanced CT scan should be performed in the same setting if clinically appropriate and justified (e.g. suspicion of local invasive disease or vascular invasion or suspicious metastases in sites of physiological tracer uptake).

Image analysis

PET/CT scans must be visually evaluated and interpreted by a board-certified nuclear medicine physician. Maximum intensity projection (MIP) PET images, as well as fused PET/CT slices in different projections (transaxial, sagittal and coronal) should be visualized. Physiological radiopharmaceutical uptake or excretion and abnormal findings should be evaluated. In particular:

¹⁸F-FDG Physiological uptake or excretion can be seen in the brain cortex, salivary glands, lymphatic tissue of the Waldeyer's ring, muscles, brown fat, myocardium, mediastinum, liver, kidneys and bladder, gastrointestinal tract, testes, uterus and ovaries (before menopause) [33].

¹⁸F-FDOPA Physiological uptake or excretion can be seen in the striatum, pancreas, liver, gallbladder, biliary tract, bowel, kidneys and urinary tract. Adrenal glands can be faintly visible [39, 42, 43].

¹⁸Ga-SSA Physiological uptake or excretion can be seen in the liver, spleen, pituitary, thyroid, kidneys, adrenal glands, salivary glands, stomach wall, bowel, pancreas, prostate gland and breast. The differences among various radiolabelled SSA (due to different affinities for SSTR subtypes) have no significant impact on the interpretation of the PET scans [34].

A PET finding is considered abnormal when focal tracer accumulation is greater than background bloodpool activity and located outside of organs with physiologic tracer uptake or when exceeding the physiological background activity within an organ. Abnormal PET tracer accumulation, especially focal accumulation, should be evaluated in combination with intensity of uptake and anatomical findings at co-registered CT scan. Additionally, semi-quantitative PET analysis can be performed by reporting the maximal standardized uptake value (SUVmax) of the PET findings, calculated based on measured activity, decay-corrected injected dose and patient body weight. However, the contribution SUVmax to patients' assessment is debated mainly due to the wide methodological variability [33].

Pitfalls

¹⁸**F-FDG** Possible causes of false negative findings are small, slow-growing, necrotic, calcified or sclerotic MTC lesions or located near or in sites of physiological radiopharmaceutical uptake [40]. False positive findings may be due to inflammatory lesions (due to the high consumption of glucose by inflammatory cells) or other tumours [40].

¹⁸F-FDOPA Possible causes of false negative findings are small MTC lesions or located near or in sites of physiological radiopharmaceutical uptake or tumour dedifferentiation [41–44]. False positive results are uncommon and they may be related to radiopharmaceutical uptake by other NETs beyond MTC. Rarely, ¹⁸F-FDOPA uptake may be due to inflammation, since high levels of amino acid transport have also been found in macrophages [42–44].

¹⁸Ga-SSA Possible causes of false negative findings are small MTC lesions or located near or in sites of physiological radiopharmaceutical uptake or expressing low amount of SSTRs or tumour dedifferentiation [34, 45, 46]. False positive results of ¹⁸Ga-SSA PET/CT may be related to radiopharmaceutical uptake by residual thyroid tissue, non-specific uptake in jugulodigastric lymph nodes, benign bone lesions (hemangioma and fractures), ectopic spleen tissue, other tumours or inflammation (since activated lymphocytes may overexpress SSTRs) [34, 45].

Other PET radiopharmaceuticals in MTC

Limited literature data are available about other PET radiopharmaceuticals in patients with MTC [47, 48]. One study demonstrated the feasibility of anti-CEA immune-PET using a ⁶⁸Ga-labelled radiotracer (IMP288) in MTC patients [47]. Another study evaluated the possible role of PET using the amino acid tracer ¹¹C-methionine in patients with recurrent MTC but minimal additional information compared with combined ¹⁸F-FDG PET/CT and neck US has been reported [48].

Preoperative imaging

Neck US is useful to evaluate the risk of malignancy of thyroid nodules. However, even if solid hypoechoic nodules with intra-nodular coarse calcifications may be suspicious for MTC, no pathognomonic US features are available and serum CT measurement should be promptly required in case of US suspicious features [1]. All patients with suspicious MTC deserve a careful neck US to evaluated capsular infiltration and/ or lymph node metastases. Preoperative staging of MTC Neck US is mostly based on neck US and serum CT levels [1, 12, 20]. Additional cross-sectional imaging (computed tomography and/or magnetic resonance imaging) is recommended in patients with positive US examination and/or serum CT > 500 pg/mL [12].

Imaging for detection of persistent/recurrent MTC

According to current clinical guidelines, a careful clinical examination and neck US are required in patients with detectable serum CT with levels < 150 pg/mL as cervical lymph nodes are generally involved in such cases. Patients with a negative assessment are followed by serum CT and CEA measurement and neck US examination every 6 to 12 months [12]. Patients with postoperative CT > 150 pg/mL and/or shortened CT/ CEA doubling times deserve more extensive evaluation by anatomic imaging procedures (US, CT, MRI) and bone scintigraphy to promptly detect MTC metastases [12, 21]. Additionally, PET/CT using different radiopharmaceuticals (i.e. ¹⁸F-FDG, ¹⁸F-FDOPA and ⁶⁸Ga-SSA) proved to be sensitive and accurate in detecting MTC recurrences/metastases and assess their biological and clinical aggressiveness [1, 12, 47-73].

Diagnostic performance of ¹⁸F-FDG-PET/CT

Basic characteristics, technical aspects and main findings of articles about ¹⁸F-FDG PET/CT in patients with MTC are briefly reported in Tables 1 and 2. Several studies [27, 32, 46, 70–73] and two meta-analyses [44, 45] evaluated the role of ¹⁸F-FDG PET/CT in recurrent MTC, whereas limited data are available on preoperative MTC staging [65-68]. Overall, conflicting results were described in patients with recurrent MTC with reported patient-based sensitivity and specificity ranging from 17 to 93% and from 68 to 92%, respectively (Table 2). Such heterogeneous findings are likely related to different procedures and technical protocols and different inclusion criteria adopted in different studies (i.e. previously known lesions versus occult disease; smouldering versus aggressive disease) [38]. Basing on meta-analysis studies the patient-based detection rate of ¹⁸F-FDG PET or PET/CT in recurrent MTC ranges from 59% (95% confidence interval: 54-63%) to 69% (95% confidence interval: 64-74%) [69, 70]. Consequently, negative ¹⁸F-FDG PET/CT are reported in 30-40% of MTC patients with increasing biomarkers levels. It should be considered, however, that ¹⁸F-FDG PET/CT is generally required after previous negative cross-sectional anatomic studies. Additionally, ¹⁸F-FDG PET/CT examination may correctly address the management of recurrent MTC when hypermetabolic lesions are detected [69, 70, 71]. Notably, a positive relationship exists between serum levels of CT and CEA and the sensitivity of ¹⁸F-FDG PET/CT [1, 12, 32]. Moreover, sensitivity of ¹⁸F-FDG PET/CT improves in patients with shorter serum calcitonin and CEA doubling times,

Authors	Year	Country	Study design	Indication of ¹⁸ F- FDG PET/CT	Patients evaluated	Mean age (years)	%Male	Type of MTC
Werner et al. [49]	2017	Germany	Retrospective multicentric	Treatment response	18	48	67%	17 sMTC (94%), 1 hMTC (6%)
Romero-Lluch et al. [50]	2017	Spain	Prospective monocentric	Restaging	18	48	28%	10 sMTC (55%), 8 hMTC (45%))
Putzer et al. [51]	2017	Brazil	Retrospective monocentric	Restaging	17	49	29%	10 sMTC (59%), 7 hMTC (41%)
Łapińska et al. [52]	2017	India	Prospective monocentric	restaging	7	NR	NR	NR
Pałyga et al. [53]		Italy	Retrospective monocentric	Staging or restaging	25	60	48%	NR
Traub-Weidinger et al. [46]	2015	Austria	Retrospective monocentric	Restaging	8	NR	NR	NR
Golubić et al. [54]	2014	China	Retrospective monocentric	Restaging	50	49	72%	NR
Archier et al. [55]	2014	France	Prospective monocentric	Treatment response	42	54	60%	NR
Gomez-Camarero et al. [56]	2012	Spain	Retrospective monocentric	Restaging	31	56	45%	17 sMTC (55%), 14 hMTC (45%)
Skoura et al. [57]	2012	Greece	Prospective monocentric	Restaging	51	53	28%	33 sMTC (65%), 18 hMTC (35%)
Rasul et al. [58]	2012	India	Prospective monocentric	Restaging	41	45	73%	NR
Treglia et al. [59]	2012	Italy	Retrospective multicentric	Restaging	18	53	33%	16 sMTC (89%), 2 hMTC (11%)
Kauhanen et al. [60]	2011	Finland	Prospective multicentric	Restaging	19	52	53%	16 sMTC (84%), 3 hMTC (16%)
Ozkan et al. [61]	2011	Turkey	Retrospective monocentric	Restaging	33	50	27%	28 sMTC (85%), 5 hMTC (15%)
Jang et al. [62]	2010	Korea	Prospective monocentric	Restaging	16	51	56%	15 sMTC (94%), 1 sMTC (6%)
Carr et al. [63]	2010	USA	Prospective monocentric	Treatment response	7	NR	NR	NR
Lam et al. [64]	2010	USA	Prospective monocentric	Treatment response	9	NR	NR	NR
Skoura et al. [65]	2010	Greece	Retrospective monocentric	Restaging	32	52	31%	22 sMTC (69%), 10 hMTC (31%)
Marzola et al. [66]	2010	Italy	Prospective monocentric	Restaging	18	51	44%	16 sMTC (89%), 2 hMTC (11%)
Bogsrud et al. [67]	2010	USA and Norway	Retrospective monocentric	Restaging	29	50	55%	21 sMTC (72%), 8 hMTC (28%)
Beheshti et al. [68]	2009	Austria	Retrospective monocentric	Restaging	32	42	38%	17 sMTC (53%), 11 hMTC (34%), 4 NR (13%)
Rubello et al. [69]	2008	Italy	Prospective monocentric	Restaging	19	53	42%	14 sMTC (74%), 5 hMTC (26%)
Oudoux et al. [70]	2007	France	Prospective multicentric	Restaging	33	53	64%	NR
Giraudet et al. [32]	2007	France	Prospective monocentric	Restaging	55	56	62%	43 sMTC (78%), 12 hMTC (22%)
Ong et al. [48]	2007	USA	Retrospective monocentric	Restaging	16	59	64%	NR

 Table 1
 Basic study and patient characteristics of relevant articles about ¹⁸F-FDG PET/CT in MTC

NR, not reported; hMTC, hereditary medullary thyroid carcinoma; sMTC, sporadic medullary thyroid carcinoma

¹⁸ F-FDG PET/CT in MTC
of relevant articles about
and main findings of
Technical aspects at
Table 2

Authors	Injected activity	Injected Time interval between Image activity radiotracer injection and	Image analysis	Other nuclear medicine techniques nerformed	Reference standard	Sensitivity	Sensitivity Specificity	Change of	Prognostic	Role in treatment
	6	image acquisition						0		response assessment
Werner et al. [49]	NR	60 min	Visual and semi	Ι	RECIST	NR	NR	1	Yes	Yes
Romero-Lluch et al. [50]	164–444 MBq 60 min	60 min	Visual and semi	¹⁸ F-FDOPA PET/CT	Pathology and/or clinical/imaging	50%(p)	NR	I		
Putzer et al. [51]	NR	NR	Visual and semiquantita- tive	I	id/or aging	65%(p)	NR	I	Yes	I
Łapińska et al. [52]	NR	NR	Visual and semiquantita- tive	MIBG	id/or aging	72%(p)	NR	I	I	I
Palyga et al. [53]	370 MBq	60 min	Visual and semiquantita- tive	SRS	id/or aging	63%(l)	NR	I	I	I
Traub-Weidinger et al. [46]	370 MBq	60 min	Visual	Somatostatin receptor PET/CT	Pathology and/or clinical/imaging follow-un	NR	NR	I	I	I
Golubic et al. [54] 7.4 MBq/Kg	7.4 MBq/Kg	60 min	Visual and semiquantita- tive	I	id/or aging	66%(p), 73%(l)	92%(p), 67%(l)	Yes (16%)	I	I
Archier et al. [55]	250-450 MBq	60 min	Visual and semiquantita- tive	I	RECIST	NR	NR	I	Yes	Yes
Gomez-Camarero et al. [56]	333–434 MBq	60 min	Visual and semiquantita- tive	I	Pathology and/or clinical/imaging follow-un	88%(p)	85%(p)	Yes (45%)	I	I
Skoura et al. [57]	5 MBq/Kg	60 min	Visual and semiquantita- tive	I	ıd/or laging	44%(p)	NR	I	I	I
Rasul et al. [58]	370 MBq	4560 min	Visual and semiquantita-	Somatostatin receptor PET/CT	id/or aging	63%(p)	NR	I	I	I
Treglia et al. [59]	259–407 MBq	60 min	Visual and semiquantita- tive	¹⁸ F-FDOPA PET/CT and somatostatin re- centor PFT/CT	Pathology and/or clinical/imaging follow-un	17%(p), 28%(l)	NR	No	I	I
Kauhanen et al. [60]	$377 \pm 30 \text{ MBq}$	60 min	Visual and semiquantita-	¹⁸ F-FDOPA PET/CT	d/or aging	53%(p), 47%(l)	NR	I	I	I
Ozkan et al. [61]	296–370 MBq 60 min	60 min	Visual and semiquantita- tive	I	ld/or aging	93%(p)	68%(p)	I	I	I

Table 2 (continued)	(þ									
Authors	Injected activity	Time interval between radiotracer injection and image acquisition	Image analysis	Other nuclear medicine techniques performed	Reference standard	Sensitivity	Sensitivity Specificity	Change of management	Prognostic role	Role in treatment response assessment
Jang et al. [62]	370 MBq	60 min	Visual	SRS, MIBG, bone scan, ¹¹ C-methionine PFT/CT	Pathology and/or clinical/imaging follow-un	63%(p), 80%(l)	NR	I	I	1
Carr et al. [63]	NR	60 min	Visual and semiquantita-		RECIST	NR	NR	I	I	Yes
Lam et al. [64]	NR	75 min	Usual and semiquantita-	I	RECIST	NR	NR	Ι	I	Yes
Skoura et al. [65]	370 MBq	60 min	Uve Visual and semiquantita-	1	Pathology and/or clinical/imaging	47%(p)	NR	Ι	I	1
Marzola et al. [66] 2.2 MBq/Kg	2.2 MBq/Kg	60 min	uve Visual and semiquantita- tive	SRS, MIBG, ¹⁸ F-FDOPA PET/CT	Pathology	61%(p), 58%(l)	NR	Ι	I	1
Bogsrud et al. [67] 740 MBq	740 MBq	6090 mim	Visual	I	Pathology and/or clinical/imaging	45%(p)	NR	I	Yes	1
Beheshti et al. [68]	NR	NR	NR	SRS, MIBG, MIBI, bone scan	Pathology and/or clinical/imaging	NR	NR	Yes	I	1
Beheshti et al. [68]	370 MBq	60 min	Visual and semiquantita- tive	¹⁸ F-FDOPA PET/CT	Pathology and/or clinical/imaging follow-up	overall: 58%(p-), 67%(1)				
restaging: 53%(p)	NR	I	I	I		(1)~~ 70				
Rubello et al. [69]	5.5 MBq/Kg	60–90 min	Visual and semiquantita- tive	SRS	Pathology	79%(p); 93%(l)	NR	Yes (21%)	I	I
Oudoux et al. [70] 5–7 MBq/Kg	5-7 MBq/Kg	60 min	Visual and semiquantita-	Anti-CEA immunoscintigraphy	Pathology and/or clinical/imaging follow-mode	76%(l)	NR	I	Yes	I
Giraudet et al. [32]	5 MBq/Kg	60 min	Visual and semiquantita-	Bone scan	Pathology and/or clinical/imaging	58%(p)	NR	I	No	I
Ong et al. [48]	555 MBq	minimum 45 min	Visual and semiquantita- tive	SRS	Pathology and/or clinical/imaging follow-up	62%(p)	NR	I	No	I
(p) = on a per patie scintigraphy; <i>MIB</i> ,	nt-based analysis , ^{99m} Tc-methoxy	(p) = on a per patient-based analysis; (l) = on a per patient-based analysis; <i>NR</i> , not reported; <i>MBq</i> , megaBequerel; <i>SRS</i> , somatostatin receptor scintigraphy; <i>MIBG</i> , radiolabelled metaiodobenzylguanidine scintigraphy; <i>MIBI</i> , ^{99m} Tc-methoxyisobutylisonitrile scintigraphy; (V)DMSA, pentavalent dimercaptosuccinic acid scintigraphy	analysis; NR, not rep y; (V)DMSA, pentav	alysis; <i>NR</i> , not reported; <i>MBq</i> , megaBequerel; <i>SRS</i> , somatost (<i>V)DMSA</i> , pentavalent dimercaptosuccinic acid scintigraphy	el; SRS, somatostatin vcid scintigraphy	receptor scii	ntigraphy; <i>M</i>	IBG, radiolabe	lled metaiodo	benzylguanidine

confirming the usefulness of this imaging method in patients with more aggressive disease compared with those with slow-ly progressive disease [1, 12, 35, 38, 39].

Other indications of ¹⁸F-FDG PET/CT in MTC

As demonstrated by some studies, ¹⁸F-FDG PET/CT is able to accurately identify MTC patients with poor prognosis and life expectancy [68–70]. Furthermore, this imaging method has been successfully used to evaluate response to targeted therapies in patients with advanced metastatic MTC treatment [62–64].

Diagnostic performance of ¹⁸F-FDOPA PET/CT

Basic characteristics, technical aspects and main findings of articles about ¹⁸F-FDOPA PET/CT in MTC patients are summarized in Tables 3 and 4. Several studies [61, 62, 67, 70] and one meta-analysis [44] addressed the diagnostic performance of ¹⁸F-FDOPA PET/CT in recurrent MTC whereas few data are available about staging MTC before primary surgery [70]. Recently, however, ¹⁸F-FDOPA PET/contrast-enhanced CT (PET/ceCT) was reported to be highly sensitivity to stage MTC before surgery. Notably, its sensitivity exceeded that of neck US in detecting cervical lymph node metastases [60]. In summary, a consistently high specificity but a wide patient-based sensitivity range, from 45 to 93%, was reported in different studies using ¹⁸F-FDOPA PET/CT in patients with suspicious MTC recurrences (Table 4). Such differences are likely related to different techniques and different inclusion criteria among studies. As reported in a meta-analysis of the literature, the per patient detection rate of ¹⁸F-FDOPA PET or PET/CT is 66% (95% confidence interval, 58-74%) in patients with suspected recurrent MTC. When PET-alone studies were excluded this value increases to 72% [44]. All in all, ¹⁸F-FDOPA PET/CT may address the surgical management in a significant number of patients with recurrent MTC when positive [59]. Notably, its detection rate further improves in patients with higher levels and shorter doubling time of serum CT, reaching a detection rate of 86% in patients with calcitonin doubling time < 24 months [44, 55–58]. Premedication with carbidopa was previously proposed to improve the tracer's bioavailability but its impact on the detection rate of ¹⁸F-FDOPA PET/CT was

 Table 3
 Basic study and patient characteristics of relevant articles about ¹⁸F-FDOPA PET/CT in MTC

Authors	Year	Country	Study design	Indication of ¹⁸ F- FDOPA PET/CT	Patients evaluated	Mean age (years)	%Male	Type of MTC
Caobelli et al. [72]	2018	Italy	Retrospective multicentric	Restaging and prognosis	60	64	7%	58 sMTC (97%), 2 hMTC (3%)
Romero-Lluch et al. [50]	2017	Spain	Prospective monocentric	Restaging	18	48	28%	10 sMTC (55%), 8 hMTC (45%))
Golubic et al. [54]	2017	Croatia	Prospective monocentric	Restaging	28	57	39%	25 sMTC (89%), 3 hMTC (11%)
Archier et al. [55]	2016	France	Retrospective multicentric	Restaging	86	51	48%	76 sMTC (88%), 10 hMTC (12%)
Sesti et al. [73]	2014	Austria	Retrospective monocentric	Restaging	39	62	54%	NR
Treglia et al. [41]	2013	Italy	Prospective monocentric	Restaging	15	59	40%	NR
Soussan et al. [40]	2012	France	Retrospective monocentric	Staging or restaging	14	50	29%	NR
Chondrogiannis et al. [43]	2012	Italy	Retrospective monocentric	Restaging	43	NR	NR	NR
Treglia et al. [44]	2012	Italy	Retrospective multicentric	Restaging	18	53	33%	16 sMTC (89%), 2 hMTC (11%)
Kauhanen et al. [60]	2011	Finland	Prospective multicentric	Restaging	19	52	53%	16 sMTC (84%), 3 hMTC (16%)
Luster et al. [75]	2010	Germany	Retrospective monocentric	Restaging	26	48	46%	15 sMTC (58%), 11 hMTC (42%)
Marzola et al. [66]	2010	Italy	Prospective monocentric	Restaging	18	51	44%	16 sMTC (89%), 2 hMTC (11%)
Beheshti et al. [68]	2009	Austria	Prospective monocentric	Staging or restaging	26	59	38%	25 sMTC (96%), 1 hMTC (4%)

NR, not reported; hMTC, hereditary medullary thyroid carcinoma; sMTC, sporadic medullary thyroid carcinoma

Table 4 Techn	iical aspects and main	Technical aspects and main findings of relevant articles about ¹⁸ F-FDOPA PET/CT in MTC	about ¹⁸ F-FDOPA	PET/CT in MTC						
Authors	Injected activity	Time interval between radiotracer injection and image acquisition	Image analysis	Other nuclear medicine techniques performed	Reference standard	Sensitivity	Specificity Change of manageme	Change of Prog management role	Prognostic role	Role in treatment response assessment
Caobelli et al. [72]	209 ± 67 MBq	60 min	Visual and semi quantitative	1	id/or	45%(p)	NR	1	Yes	
Romero-Lluch et al. [50]	174–288 MBq	60 min	Visual and semi quantitative	¹⁸ F-FDG PET/CT	routow-up Pathology and/or 67%(p) clinical/- imaging	67%(p)	NR	Yes (61%)-	I	I
Golubic et al. [54]	2-3 MBq/Kg	10 min	Visual and semi quantitative		id/or	57%(p)	NR	Yes (57%)	I	1
Archier et al. [55]	3 MBq/Kg	10 min and 30 min	Visual and semi quantitative	1	Iouow-up Pathology and/or 76%(p), 24%(l) NR clinical/- imaging	76%(p), 24%(l)	NR	1	I	1
Sesti et al. [73]	NR	NR	Visual	I	ld/or	52%(p)	NR	1	I	I
Treglia et al. [41]	4 MBq/Kg	15 min and 60 min	Visual and semi quantitative	I	ld/or	73%(p)	NR	1	I	1
Soussan et al. [40]	4 MBq/Kg	15 min and at least 60 min	Visual and semiquantita- tive	I	id/or	93%(p)	NR	I	Ι	I
Chondrogiannis et al. [42]	185 MBq	60 min	Visual and semiquantita- tive	I	Tollow-up Pathology and/or NR clinical/- imaging	NR	NR	1	I	1
Treglia et al. [59]	165–370 MBq	60 min	Visual and semiquantita- tive	¹⁸ F-FDG PET/CT and somatostatin receptor PET/CT	Pathology and/or clinical/- imaging	72%(p), 85%(l) NR	NR	Yes (44%)	I	I
Kauhanen et al. [60]	243 ± 46 MBq + CP 60 min	60 min	Visual and semiquantita- tive	¹⁸ F-FDG PET/CT	Pathology and/or clinical/- imaging	58%(p), 52%(l) NR	NR	Ι	I	Ι
Luster et al. [75]	Luster et al. [75] 186–431 MBq + CP NR	> NR	Visual	I	Pathology and/or 74%(p)	74%(p)	100%(p)	I	I	1

 $\underline{\textcircled{O}}$ Springer

70

		radiotracer injection and image acquisition	Image analysis	Outer nuccear medicine techniques performed	kerence standard	Sensitivity	Specificity	specificity Change of Prognostic Kole in management role treatme respons assessm	Kole in treatment response assessment
					clinical/- imaging follow-up				
Marzola et al. [66]	2.2 MBq/Kg	60 min	Visual and semiquantita- tive	SRS, MIBG, ¹⁸ F-FDG PET/CT	Pathology	83%(p), 76%(l) NR	NR	I	I
Beheshti et al. [68]	4 MBq/Kg	30 min	Visual and semiquantita- tive	¹⁸ F-FDG PET/CT	Pathology and/or clinical/- imaging follow-up	overall: 81%(p), 94%(l) restaging: 73%(p)	NR	Yes (27%) –	I

Diagnostic performance of ⁶⁸Ga-SSA PET/CT in staging and restaging MTC

astatic MTC.

rate of PET/CT in MTC patients [40, 41].

Other indications of ¹⁸F-FDOPA PET/CT in MTC

A recent multicentric study demonstrated that ¹⁸F-FDOPA

not demonstrated in MTC patients [44]. Interestingly, some authors demonstrated that, compared with standard acquisition obtained 30 to 60 min after ¹⁸F-FDOPA administration, early image acquisition (around 15 min after radiopharmaceutical injection) improves the detection

Basic characteristics, technical aspects and main findings of articles about ⁶⁸Ga-SSA PET/CT in MTC patients are reported in Tables 5 and 6. Several studies [49-53, 76] and one meta-analysis [45] evaluated the diagnostic performance of ⁶⁸Ga-SSA PET/CT in patients with recurrent MTC whereas only sparse data are retrieved about the diagnostic performance of ⁶⁸Ga-SSA PET/CT in preoperative MTC staging [73]. The diagnostic performance of ⁶⁸Ga-SSA PET/CT is globally inferior in MTC compared with other NETs due to the variable SSTR expression in MTC [34-37]. The studies using ⁶⁸Ga-SSA PET/CT in detecting recurrent MTC showed wide range of patient-based sensitivity, ranging from 25 to 100% (Table 6). Different technical aspects and inclusion criteria could likely explain the observed inter-studies heterogeneity. On a per patient-based analysis, the detection rate of ⁶⁸Ga-SSA PET or PET/CT is 63.5% (95% confidence interval: 49-77) in suspected recurrent MTC [45]. Then, the surgical management of a significant number of patients with recurrent MTC can be modified by a positive ⁶⁸Ga-SSA PET/CT [27, 73, 76,]. This is particularly relevant when considering that ⁶⁸Ga-SSA PET/CT examinations are often performed after previous multiple negative morphologic imaging studies [45]. The detection rate of ⁶⁸Ga-SSA PET/CT has also exceeded that of bone scintigraphy and MRI in a small group of MTC patients with bone metastases [49]. Finally, according to literature data, the detection rate of ⁶⁸Ga-SSA PET/CT improves in patients with higher CT levels [45].

Other indications of ¹⁸Ga-SSA PET/CT in MTC

On a pathological basis, expression of SSTR-2A was found to be correlated with increased overall survival in patients with MTC [72]. Treatments with cold or radiolabelled SSA are expected to be effective in

Authors	Year	Country	Study design	Indication of somatostatin receptor PET/CT	Patients evaluated	Mean age (years)	%male	Type of MTC
Yamaga et al. [77]	2017	Brazil	Prospective monocentric	Restaging	15	44	40%	10 sMTC (67%), 5 hMTC (33%)
Tran et al. [79]	2015	UK	Retrospective monocentic	Staging or restaging	7	45	43%	NR
Traub-Weidinger et al. [46]	2015	Austria	Retrospective monocentric	Restaging	8	NR	NR	NR
Ozkan et al. [61]	2015	Turkey	Retrospective monocentric	Restaging	22	43	50%	17 sMTC (77%), 5 hMTC (23%)
Budiawan et al. [78]	2013	Germany	Retrospective monocentric	Restaging and treatment response	8	47	50%	NR
Putzer et al. [51]	2013	Austria	Retrospective monocentric	Restaging	8	57	NR	NR
Rasul et al. [58]	2012	India	Prospective monocentric	Restaging	52	45	73%	NR
Treglia et al. [45]	2012	Italy	Retrospective multicentric	Restaging	18	53	33%	16 sMTC (89%), 2 hMTC (11%)
Łapińska et al. [52]	2011	Poland	Retrospective monocentric	Restaging	4	NR	NR	NR
Palyga et al. [53]	2010	Poland	Prospective monocentric	Restaging	8	56	50%	NR

Table 5 Basic study and patient characteristics of relevant articles about somatostatin receptor PET/CT in MTC

NR, not reported; hMTC, hereditary medullary thyroid carcinoma; sMTC, sporadic medullary thyroid carcinoma

patients with advanced/metastatic MTC lesions overexpressing SSTRs. Then, ⁶⁸Ga-SSA PET/CT could be proposed to assess SSTR-2A expression and select MTC patients for SSTR-2A targeting therapies. However, its usefulness in assessing the response of MTC patients to peptide receptor radionuclide therapy was only reported in one study [50] and there are no studies demonstrating the prognostic value of ⁶⁸Ga-SSA PET/CT in MTC patients.

Comparison of different PET radiopharmaceuticals in MTC

Comparative analyses between PET/CT examinations performed with different radiopharmaceuticals in the setting of MTC restaging are available in the literature [27, 46, 48, 60, 61, 67, 70, 78] (Tables 2, 4 and 6). ¹⁸F-FDOPA PET/CT has shown better sensitivity and specificity than ¹⁸F-FDG PET/ CT; nevertheless, a complementary/sequential use of these methods may improve the management of recurrent MTC [54, 63, 64, 67, 77]. ¹⁸F-FDOPA tracks amino acid decarboxylation pathway, whereas ¹⁸F-FDG is a proliferation marker. Accordingly, differentiated MTC cells are characterized by increased ¹⁸F-FDOPA uptake and absent ¹⁸F-FDG uptake while the opposite happen in de-differentiated MTC cells [54, 63, 64, 67, 77]. In summary, ¹⁸F-FDOPA-PET/CT is the most accurate method to assess the extent of the disease in patients with recurrent MTC while ¹⁸F-FDG PET/CT is a powerful prognostic toll and its positivity is associated to a more aggressive tumour phenotype and a worse prognosis [54, 60, 61, 63, 64, 67, 77]. A similar complementary role also exists for ⁶⁸Ga-SSA and ¹⁸F-FDG PET/CT but no significant difference in detection rates of MTC lesions was proved [27, 46, 60, 77]. Currently, only one head to head comparison of ¹⁸F-FDOPA, ¹⁸F-FDG and ⁶⁸Ga-SSA PET/CT in patients with postoperative increased serum CT is available in literature. The diagnostic performance of ¹⁸F-FDOPA PET/CT performance exceeded that of ¹⁸F-FDG and ⁶⁸Ga-SSA PET/CT with a significantly higher proportion of change in the patient management [35].

The radiation dose is very similar for ¹⁸F-FDOPA, ¹⁸F-FDG and ⁶⁸Ga-SSA PET/CT when the administered activity and the volume explored by CT are accounted for. Moreover, the actual effective dose is currently decreasing with a trend to reduce the injected activity of radiopharmaceuticals by using time of flight PET/CT tomographs.

¹⁸F-FDG and ¹⁸F-FDOPA can be prepared in-house or provided "ready to use." The synthesis of ¹⁸F-FDOPA is difficult and this radiopharmaceutical is even the most expensive among those available for MTC evaluation while labelling of lyophilized peptides requires ⁶⁸Ga and ⁶⁸Ge/⁶⁸Ga generator and radiochemical controls. Overall, the availability of ¹⁸F-FDOPA and ⁶⁸Ga-SSA is currently limited compared with

Authors	Injected activity and type of peptide	Time interval between radiotracer injection and image acquisition	Image analysis	Other nuclear medicine techniques performed	Reference standard	Sensitivity	Specificity	Sensitivity Specificity Change of Prog management role	Prognostic role	Role in treatment response assessment
Yamaga et al. [77]	185 MBq DOTATATE	60 min	Visual and semiquantita-	SRS	Pathology and/or clinical/imaging	100% (p)	NR	I	I	Ι
Tran et al. [79]	52–89 MBq DOTATATE	45 min	Visual and semiquantita- tive	¹⁸ F-FDG PET/CT, MIBG	Pathology and/or clinical/imaging follow-up	86%(p)	NR	I	I	I
Traub-Weidinger et al. [46]	95–150 MBq DOTATOC/LAN	90 min	Visual	¹⁸ F-FDG PET/CT	Pathology and/or clinical/imaging follow-un	75%(p)	NR	I	I	I
Ozkan et al. [61] 111–148 MBq	111–148 MBq	45-60 min	Visual	¹⁸ F-FDG PET/CT, (V)DMSA	Pathology and/or clinical/imaging follow-un	68%(p), 91%(l)	NR	Yes (18%)	I	I
Budiawan et al. [78]	NR DOTATOC/NOC/T- ATF	NR	Visual and semiquantita- tive	I	EORTC response assessment criteria	NR	NR	I	I	Yes
Putzer et al. [51]	150-200 MBq DOTATOC	60 min	Visual and semiquantita-	SRS	Pathology and/or clinical/imaging	75%(p)	NR	I	I	I
Rasul et al. [58]	148–222 MBq DOTANOC	45-60 min	Visual and semiquantita- tive	¹⁸ F-FDG PET/CT	Pathology and/or clinical/imaging follow-	81%(p)	NR	Yes (11%)	I	I
Treglia et al. [45]	Treglia et al. [45] 1.5–2.5 MBq/Kg DOTANOC/ TOC	50-70 min	Visual and semiquantita-	¹⁸ F-FDOPA PET/CT and ¹⁸ F-FDG PET/CT	Pathology and/or clinical/imaging follow-un	33%(p), 20%(l)	NR	No	I	I
Lapinska et al. [52]	111–185 MBq DOTATATE	45-60 min	Visual and semiquantita- tive		Pathology and/or clinical/imaging follow-up	25% (p)	NR	I	I	I
Palyga et al. [53] 120–185 MBq DOTATATE	120–185 MBq DOTATATE	60 min	Visual and semiquantita- tive	Bone scintigraphy	Pathology and/or clinical/imaging follow-up	25%(p)	NR	Yes (25%)	I	I

(p) = on a per patient-based analysis; (l) = on a per patient-based analysis; *NR*, not reported; *MBq*, megaBequerel; *SRS*, somatostatin receptor scintigraphy; *MIBG*, radiolabelled metalodobenzylguanidine scintigraphy; *(V)DMSA*, pentavalent dimercaptosuccinic acid scintigraphy

¹⁸F-FDG and, sometime, referral of MTC patients to specialized centres should be necessary for these examinations. Costeffectiveness comparative studies on different PET/CT examinations in recurrent/metastatic MTC are warranted [78].

PET/CT in MTC: practical recommendations

There is no sufficient evidence to recommend PET/CT with several radiopharmaceuticals for staging MTC before treatment or for evaluating treatment response in metastatic MTC and more studies investigating these indications are needed. Conversely, consistent evidences support the use of PET/CT with different radiopharmaceuticals to restage MTC patients with rising tumour markers. PET/CT imaging with available radiopharmaceuticals is suggested when serum CT exceed 150 pg/ mL or CT doubling time is shortened (i.e. <24 months) [1, 12, 19, 32, 68, 70, 75, 77, 78]. If available, ¹⁸F-FDOPA PET/CT is preferred as first-line procedure due to its superior diagnostic performance compared with other PET tracers. In cases of negative or unfeasible ¹⁸F-FDOPA PET/CT, ¹⁸F-FDG PET/CT should be performed, in particular if calcitonin and CEA levels are rapidly rising (i.e. doubling time < 1 year) or an aggressive behaviour of the disease is expected (e.g. CEA levels disproportionately high compared with calcitonin levels). ⁶⁸Ga-SSA PET/CT could be considered in selected cases with inconclusive anatomic imaging, ¹⁸F-FDOPA and ¹⁸F-FDG PET/CT results and to assess the feasibility of peptide receptor radionuclide therapy in highly selected patients considered for this targeted treatment.

Suggested PET/CT reporting in MTC

As for other NETs, the nuclear medicine physician should record: the clinical question (i.e. staging, restaging, evaluation of treatment response), a brief clinical history (including type and chronology of previous therapies if any), type and date of examination, radiopharmaceutical and administered activity, CT parameters and dosimetry, relevant medications, laboratory data (in particular for MTC the last serum calcitonin and CEA values and their doubling times should be reported) and results of other imaging studies [34].

As for other NETs, the PET/CT report should describe as follows:

- the procedure;
- the findings including site and size of the lesion(s), uptake intensity (qualitatively and semi-quantitatively assessed by using the SUV);

- comparative analysis (to previous imaging studies);
- interpretation with a clear diagnosis whenever possible or, alternatively, study limitations precluding a clear conclusion (i.e. potential false negative or false positive results). Complementary diagnostic procedure or an adequate PET/CT follow-up should be also suggested [34].

Acknowledgements This practice guideline summarizes the views of EANM Thyroid Committee and produces recommendations for which the EANM cannot be considered responsible. The recommendations should be adopted in the context of good nuclear medicine practice of nuclear and do not substitute national and international regulations. Before approval, this practice guideline was available to all EANM Committees and EANM National Societies of Nuclear Medicine. All comments, criticisms and suggestions have been considered for this EANM practice guideline.

Compliance with ethical standards

Conflict of interest L.G. is member of Roche Diagnostics advisory board and received research grants and speaker fees from Roche Diagnostics, IBSA and Sanofi-Genzyme. F.A.V. has received research grants from Sanofi-Genzyme and speaker honoraria from Sanofi-Genzyme, Diasorin and Jubilant Draximage. M.L. has received research grants and speaker honoraria from Sanofi-Genzyme, Bayer and Astra Zeneca. G.T declares that he has no conflict of interest. II declares that he has no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

References

- Trimboli P, Giovanella L, Crescenzi A, Romanelli F, Valabrega S, Spriano G, et al. Medullary thyroid cancer diagnosis: an appraisal. Head Neck. 2014;36:1216–23.
- Guyetant S, Rousselet MC, Durigon M, Chappard D, Franc B, Guerin O, et al. Sex-related C-cell hyperplasia in the normal human thyroid: a quantitative autopsy study. J Clin Endocrinol Metab. 1997;82:42–7.
- Mulligan LM, Kwok JB, Healey CS, Elsdon MJ, Eng C, Gardner E, et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature. 1993;363:458–60.
- Hofstra RM, Landsvater RM, Ceccherini I, Stulp RP, Stelwagen T, Luo Y, et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature. 1994;367:375–6.
- Marsh DJ, Learoyd DL, Andrew SD, Krishnan L, Pojer R, Richardson AL, et al. Somatic mutations in the RET protooncogene in sporadic medullary thyroid carcinoma. Clin Endocrinol. 1996;44:249–57.
- Boichard A, Croux L, Al Ghuzlan A, Broutin S, Dupuy C, Leboulleux S, et al. Somatic RAS mutations occur in a large proportion of sporadic RET-negative medullary thyroid carcinomas and extend to a previously unidentified exon. J Clin Endocrinol Metab. 2012;97:E2031–5.
- Agrawal N, Jiao Y, Sausen M, Leary R, Bettegowda C, Roberts NJ, et al. Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J Clin Endocrinol Metab. 2013;98:E364–9.

- 8. Leboulleux S, Baudin E, Travagli JP, Schlumberger M. Medullary thyroid carcinoma. Clin Endocrinol. 2004;61:299–310.
- Machens A, Hinze R, Thomusch O, Dralle H. Pattern of nodal metastasis for primary and reoperative thyroid cancer. World J Surg. 2002;26:22–8.
- Moley JF. Medullary thyroid carcinoma: management of lymph node metastases. J Natl Compr Cancer Netw. 2010;8:549–56.
- Modigliani E, Cohen R, Campos JM, Conte-Devolx B, Maes B, Boneu A, et al. Prognostic factors for survival and for biochemical cure in medullary thyroid carcinoma: results in 899 patients. The GETC study group. Groupe d'etude des tumeurs a calcitonine. Clin Endocrinol. 1998;48:265–73.
- Wells SA Jr, Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25:567–610.
- Trimboli P, Seregni E, Treglia G, Alevizaki M, Giovanella L. Procalcitonin for detecting medullary thyroid carcinoma: a systematic review. Endocr Relat Cancer. 2015;22:R157–64.
- Trimboli P, Giovanella L. Serum calcitonin negative medullary thyroid carcinoma: a systematic review of the literature. Clin Chem Lab Med. 2015;53:1507–14.
- Trimboli P, Treglia G, Guidobaldi L, Romanelli F, Nigri G, Valabrega S, et al. Detection rate of FNA cytology in medullary thyroid carcinoma: a meta-analysis. Clin Endocrinol. 2015;82:280– 5.
- Trimboli P, Guidobaldi L, Bongiovanni M, Crescenzi A, Alevizaki M, Giovanella L. Use of fine-needle aspirate calcitonin to detect medullary thyroid carcinoma: a systematic review. Diagn Cytopathol. 2016;44:45–51.
- Chernock RD, Hagemann IS. Molecular pathology of hereditary and sporadic medullary thyroid carcinomas. Am J Clin Pathol. 2015;143:768–77.
- Khurana R, Agarwal A, Bajpai VK, Verma N, Sharma AK, Gupta RP, et al. Unraveling the amyloid associated with human medullary thyroid carcinoma. Endocrinology. 2004;145:5465–70.
- Mendelsohn G, Wells SA Jr, Baylin SB. Relationship of tissue carcinoembryonic antigen and calcitonin to tumor virulence in medullary thyroid carcinoma. An immunohistochemical study in early, localized, and virulent disseminated stages of disease. Cancer. 1984;54:657–62.
- Trimboli P, Giovanella L, Valabrega S, Andrioli M, Baldelli R, Cremonini N, et al. Ultrasound features of medullary thyroid carcinoma correlate with cancer aggressiveness: a retrospective multicenter study. J Exp Clin Cancer Res. 2014;33:87.
- Skoura E. Depicting medullary thyroid cancer recurrence: the past and the future of nuclear medicine imaging. Int J Endocrinol Metab. 2013;11:e8156.
- Rufini V, Castaldi P, Treglia G, Perotti G, Gross MD, Al-Nahhas A, et al. Nuclear medicine procedures in the diagnosis and therapy of medullary thyroid carcinoma. Biomed Pharmacother. 2008;62: 139–46.
- Clarke SE, Lazarus CR, Wraight P, Sampson C, Maisey MN. Pentavalent [99mTc]DMSA, [1311]MIBG, and [99mTc]MDP–an evaluation of three imaging techniques in patients with medullary carcinoma of the thyroid. J Nucl Med. 1988;29:33–8.
- Frank-Raue K, Bihl H, Dorr U, Buhr H, Ziegler R, Raue F. Somatostatin receptor imaging in persistent medullary thyroid carcinoma. Clin Endocrinol. 1995;42:31–7.
- Kwekkeboom DJ, Reubi JC, Lamberts SW, Bruining HA, Mulder AH, Oei HY, et al. In vivo somatostatin receptor imaging in medullary thyroid carcinoma. J Clin Endocrinol Metab. 1993;76:1413– 7.
- Verga U, Muratori F, Di Sacco G, Banfi F, Libroia A. The role of radiopharmaceuticals MIBG and (V) DMSA in the diagnosis of medullary thyroid carcinoma. Henry Ford Hosp Med J. 1989;37: 175–7.

- Ozkan ZG, Kuyumcu S, Uzum AK, Gecer MF, Ozel S, Aral F, et al. Comparison of ⁶⁸Ga-DOTATATE PET-CT, ¹⁸F-FDG PET-CT and ^{99m}Tc-(V)DMSA scintigraphy in the detection of recurrent or metastatic medullary thyroid carcinoma. Nucl Med Commun. 2015;36: 242–50.
- Arslan N, Ilgan S, Yuksel D, Serdengecti M, Bulakbasi N, Ugur O, et al. Comparison of In-111 octreotide and Tc-99m (V) DMSA scintigraphy in the detection of medullary thyroid tumor foci in patients with elevated levels of tumor markers after surgery. Clin Nucl Med. 2001;26:683–8.
- Baudin E, Lumbroso J, Schlumberger M, Leclere J, Giammarile F, Gardet P, et al. Comparison of octreotide scintigraphy and conventional imaging in medullary thyroid carcinoma. J Nucl Med. 1996;37:912–6.
- Kaltsas G, Korbonits M, Heintz E, Mukherjee JJ, Jenkins PJ, Chew SL, et al. Comparison of somatostatin analog and metaiodobenzylguanidine radionuclides in the diagnosis and localization of advanced neuroendocrine tumors. J Clin Endocrinol Metab. 2001;86:895–902.
- Maiza JC, Grunenwald S, Otal P, Vezzosi D, Bennet A, Caron P. Use of 131 IMIBG therapy in MIBG-positive metastatic medullary thyroid carcinoma. Thyroid. 2012;22:654–5.
- Giraudet AL, Vanel D, Leboulleux S, Auperin A, Dromain C, Chami L, et al. Imaging medullary thyroid carcinoma with persistent elevated calcitonin levels. J Clin Endocrinol Metab. 2007;92: 4185–90.
- Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.
- Bozkurt MF, Virgolini I, Balogova S, Beheshti M, Rubello D, Decristoforo C, et al. Guideline for PET/CT imaging of neuroendocrine neoplasms with (68)Ga-DOTA-conjugated somatostatin receptor targeting peptides and (18)F-DOPA. Eur J Nucl Med Mol Imaging. 2017;44(9):1588–601.
- 35. Treglia G, Castaldi P, Villani MF, Perotti G, Filice A, Ambrosini V, et al. Comparison of different positron emission tomography tracers in patients with recurrent medullary thyroid carcinoma: our experience and a review of the literature. Recent Results Cancer Res. 2013;194:385–93.
- Treglia G, Muoio B, Giovanella L, Salvatori M. The role of positron emission tomography and positron emission tomography/computed tomography in thyroid tumours: an overview. Eur Arch Otorhinolaryngol. 2013;270:1783–7.
- Treglia G, Giovanella L, Rufini V. PET and PET/CT imaging in thyroid and adrenal diseases: an update. Hormones. 2013;12:327– 33.
- Treglia G, Rufini V, Salvatori M, Giordano A, Giovanella L. PET imaging in recurrent medullary thyroid carcinoma. Int J Mol Imaging. 2012;2012:324686.
- Rufini V, Treglia G, Perotti G, Leccisotti L, Calcagni ML, Rubello D. Role of PET in medullary thyroid carcinoma. Minerva Endocrinol. 2008;33:67–73.
- Soussan M, Nataf V, Kerrou K, Grahek D, Pascal O, Talbot JN, et al. Added value of early 18F-FDOPA PET/CT acquisition time in medullary thyroid cancer. Nucl Med Commun. 2012;33(7):775–9.
- Treglia G, Stefanelli A, Castaldi P, Rufini V. A standardized dualphase 18F-DOPA PET/CT protocol in the detection of medullary thyroid cancer. Nucl Med Commun. 2013;34(2):185–6.
- Chondrogiannis S, Marzola MC, Al-Nahhas A, Venkatanarayana TD, Mazza A, Opocher G, et al. Normal biodistribution pattern and physiologic variants of 18F-DOPA PET imaging. Nucl Med Commun. 2013;34(12):1141–9.
- Chondrogiannis S, Grassetto G, Marzola MC, Rampin L, Massaro A, Bellan E, et al. 18F-DOPA PET/CT biodistribution

consideration in 107 consecutive patients with neuroendocrine tumours. Nucl Med Commun. 2012;33(2):179-84.

- 44. Treglia G, Cocciolillo F, Di Nardo F, Poscia A, de Waure C, Giordano A, et al. Detection rate of recurrent medullary thyroid carcinoma using fluorine-18 dihydroxyphenylalanine positron emission tomography: a meta-analysis. Acad Radiol. 2012;19(10):1290–9.
- 45. Treglia G, Tamburello A, Giovanella L. Detection rate of somatostatin receptor PET in patients with recurrent medullary thyroid carcinoma: a systematic review and a meta-analysis. Hormones (Athens). 2017;16(4):262–72.
- 46. Traub-Weidinger T, Putzer D, von Guggenberg E, Dobrozemsky G, Nilica B, Kendler D, et al. Multiparametric PET imaging in thyroid malignancy characterizing tumour heterogeneity: somatostatin receptors and glucose metabolism. Eur J Nucl Med Mol Imaging. 2015;42(13):1995–2001.
- 47. Bodet-Milin C, Faivre-Chauvet A, Carlier T, Rauscher A, Bourgeois M, Cerato E, et al. Immuno-PET using anticarcinoembryonic antigen bispecific antibody and 68Galabeled peptide in metastatic medullary thyroid carcinoma: clinical optimization of the Pretargeting parameters in a first-in-human trial. J Nucl Med. 2016;57(10):1505–11.
- Ong SC, Schöder H, Patel SG, Tabangay-Lim IM, Doddamane I, Gönen M, et al. Diagnostic accuracy of 18F-FDG PET in restaging patients with medullary thyroid carcinoma and elevated calcitonin levels. J Nucl Med. 2007;48(4):501–7.
- 49. Werner RA, Schmid JS, Higuchi T, Javadi MS, Rowe SP, Märkl B, et al. Predictive value of FDG-PET in patients with advanced medullary thyroid carcinoma treated with vandetanib. J Nucl Med. 2018;59(5):756–61.
- Romero-Lluch AR, Cuenca-Cuenca JI, Guerrero-Vázquez R, Martínez-Ortega AJ, Tirado-Hospital JL, Borrego-Dorado I, et al. Diagnostic utility of PET/CT with (18)F-DOPA and (18)F-FDG in persistent or recurrent medullary thyroid carcinoma: the importance of calcitonin and carcinoembryonic antigen cutoff. Eur J Nucl Med Mol Imaging. 2017;44(12):2004–13.
- Putzer D, Kroiss A, Waitz D, Gabriel M, Traub-Weidinger T, Uprimny C, et al. Somatostatin receptor PET in neuroendocrine tumours: 68Ga-DOTA0, Tyr3-octreotide versus 68Ga-DOTA0lanreotide. Eur J Nucl Med Mol Imaging. 2013;40(3):364–72.
- Łapińska G, Bryszewska M, Fijołek-Warszewska A, Kozłowicz-Gudzińska I, Ochman P, Sackiewicz-Słaby A. The diagnostic role of 68Ga-DOTATATE PET/CT in the detection of neuroendocrine tumours. Nucl Med Rev Cent East Eur. 2011;14(1):16–20.
- 53. Pałyga I, Kowalska A, Gąsior-Perczak D, Tarnawska-Pierścińska M, Słuszniak J, Sygut J, et al. The role of PET-CT scan with somatostatin analogue labelled with gallium-68 (68Ga-DOTA-TATE PET-CT) in diagnosing patients with disseminated medullary thyroid carcinoma (MTC). Endokrynol Pol. 2010;61(5):507–11.
- Golubić AT, Pasini Nemir E, Žuvić M, Mutvar A, Kusačić Kuna S, Despot M, et al. The value of 18F-DOPA PET/CT in patients with medullary thyroid carcinoma and increased calcitonin values. Nucl Med Commun. 2017;38(7):636–41.
- Archier A, Heimburger C, Guerin C, Morange I, Palazzo FF, Henry JF, et al. (18)F-DOPA PET/CT in the diagnosis and localization of persistent medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2016;43(6):1027–33.
- 56. Gómez-Camarero P, Ortiz-de Tena A, Borrego-Dorado I, Vázquez-Albertino RJ, Navarro-González E, Ruiz-Franco-Baux JV, et al. Evaluation of efficacy and clinical impact of 18F-FDG-PET in the diagnosis of recurrent medullary thyroid cancer with increased calcitonin and negative imaging test. Rev Esp Med Nucl Imagen Mol. 2012;31(5):261–6.
- 57. Skoura E, Rondogianni P, Alevizaki M, Tzanela M, Tsagarakis S, Piaditis G, et al. Role of [(18)F]FDG-PET/CT in the detection of

occult recurrent medullary thyroid cancer. Nucl Med Commun. 2010;31(6):567-75.

- Rasul S, Hartenbach S, Rebhan K, Göllner A, Karanikas G, Mayerhoefer M, et al. [¹⁸F]DOPA PET/ceCT in diagnosis and staging of primary medullary thyroid carcinoma prior to surgery. EurJ Nucl Med Mol Imaging. 2018;45(12):2159–69.
- 59. Treglia G, Villani MF, Giordano A, Rufini V. Detection rate of recurrent medullary thyroid carcinoma using fluorine-18 fluorodeoxyglucose positron emission tomography: a meta-analysis. Endocrine. 2012;42:535–45.
- Kauhanen S, Schalin-Jäntti C, Seppänen M, Kajander S, Virtanen S, Schildt J, et al. Complementary roles of 18F-DOPA PET/CT and 18F-FDG PET/CT in medullary thyroid cancer. J Nucl Med. 2011;52(12):1855–63.
- Ozkan E, Soydal C, Kucuk ON, Ibis E, Erbay G. Impact of ¹⁸F-FDG PET/CT for detecting recurrence of medullary thyroid carcinoma. Nucl Med Commun. 2011;32(12):1162–8.
- Jang HW, Choi JY, Lee JI, Kim HK, Shin HW, Shin JH, et al. Localization of medullary thyroid carcinoma after surgery using (11)C-methionine PET/CT: comparison with (18)F-FDG PET/CT. Endocr J. 2010;57(12):1045–54.
- 63. Carr LL, Mankoff DA, Goulart BH, Eaton KD, Capell PT, Kell EM, et al. Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin Cancer Res. 2010;16(21):5260–8.
- 64. Lam ET, Ringel MD, Kloos RT, Prior TW, Knopp MV, Liang J, et al. Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. J Clin Oncol. 2010;28(14):2323–30.
- Skoura E, Rondogianni P, Alevizaki M, Tzanela M, Tsagarakis S, Piaditis G, et al. Role of [(18)F]FDG-PET/CT in the detection of occult recurrent medullary thyroid cancer. Nucl Med Commun. 2010;31(6):567–75.
- 66. Marzola MC, Pelizzo MR, Ferdeghini M, Toniato A, Massaro A, Ambrosini V, et al. Dual PET/CT with (18)F-DOPA and (18)F-FDG in metastatic medullary thyroid carcinoma and rapidly increasing calcitonin levels: comparison with conventional imaging. Eur J Surg Oncol. 2010;36(4):414–21.
- 67. Bogsrud TV, Karantanis D, Nathan MA, Mullan BP, Wiseman GA, Kasperbauer JL, et al. The prognostic value of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography in patients with suspected residual or recurrent medullary thyroid carcinoma. Mol Imaging Biol. 2010;12(5):547–53.
- Beheshti M, Pöcher S, Vali R, Waldenberger P, Broinger G, Nader M, et al. The value of 18F-DOPA PET-CT in patients with medullary thyroid carcinoma: comparison with 18F-FDG PET-CT. Eur Radiol. 2009;19(6):1425–34.
- Rubello D, Rampin L, Nanni C, Banti E, Ferdeghini M, Fanti S, et al. The role of 18F-FDG PET/CT in detecting metastatic deposits of recurrent medullary thyroid carcinoma: a prospective study. Eur J Surg Oncol. 2008;34(5):581–6.
- Oudoux A, Salaun PY, Bournaud C, Campion L, Ansquer C, Rousseau C, et al. Sensitivity and prognostic value of positron emission tomography with F-18-fluorodeoxyglucose and sensitivity of immunoscintigraphy in patients with medullary thyroid carcinoma treated with anticarcinoembryonic antigen-targeted radioimmunotherapy. J Clin Endocrinol Metab. 2007;92(12): 4590–7.
- Ong SC, Schöder H, Patel SG, Tabangay-Lim IM, Doddamane I, Gönen M, et al. Diagnostic accuracy of 18F-FDG PET in restaging patients with medullary thyroid carcinoma and elevated calcitonin levels. J Nucl Med. 2007;48(4):501–7.
- Caobelli F, Chiaravalloti A, Evangelista L, Saladini G, Schillaci O, Vadrucci M, et al. Young AIMN Working Group. Predictive and prognostic value of 18F-DOPA PET/CT in patients affected by

recurrent medullary carcinoma of the thyroid. Ann Nucl Med. 2018;32(1):7–15.

- Sesti A, Mayerhoefer M, Weber M, Anner P, Wadsak W, Dudczak R et al. Relevance of calcitonin cut-off in the follow-up of medullary thyroid carcinoma for conventional imaging and 18-fluorineflurodihydroxyphenylalanine PET. Anticancer res 2014;34:6647– 54.
- 74. Treglia G, Aktolun C, Chiti A, Frangos S, Giovanella L, Hoffmann M, et al. EANM and the EANM thyroid committee. The 2015 revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma: the "evidence-based" refusal to endorse them by EANM due to the "not evidence-based" marginalization of the role of nuclear medicine. Eur J Nucl Med Mol Imaging. 2016;43(8):1486–90.
- Luster M, Karges W, Zeich K, Pauls S, Verburg FA, Dralle H, et al. Clinical value of 18-fluorine-fluorodihydroxyphenylalanine positron emission tomography/computed tomography in the follow-up of medullary thyroid carcinoma. Thyroid. 2010;20(5):527–33.
- Soussan M, Nataf V, Kerrou K, Grahek D, Pascal O, Talbot JN, et al. Added value of early 18F-FDOPA PET/CT acquisition time in medullary thyroid cancer. Nucl Med Commun. 2012;33(7):775–9.

- 77. Yamaga LYI, Cunha ML, Campos Neto GC, Garcia MRT, Yang JH, Camacho CP, et al. (68)Ga-DOTATATE PET/CT in recurrent medullary thyroid carcinoma: a lesion-by-lesion comparison with (111)In-octreotide SPECT/CT and conventional imaging. Eur J Nucl Med Mol Imaging. 2017;44(10):1695–701.
- Budiawan H, Salavati A, Kulkarni HR, Baum RP. Peptide receptor radionuclide therapy of treatment-refractory metastatic thyroid cancer using (90)yttrium and (177)lutetium labeled somatostatin analogs: toxicity, response and survival analysis. Am J Nucl Med Mol Imaging. 2013;4(1):39–52.
- 79. Tran K, Khan S, Taghizadehasl M, Palazzo F, Frilling A, Todd JF, et al. Gallium-68 dotatate PET/CT is superior to other imaging modalities in the detection of medullary carcinoma of the thyroid in the presence of high serum calcitonin. Hell J Nucl Med. 2015;18(1):19–24.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.